首页 > 3C数码 > 镓未来推出120W超快闪充迷你PD快充电源量产方案

镓未来推出120W超快闪充迷你PD快充电源量产方案

市场痛点

手机闪充技术的兴起与普及,是手机行业走向深度创新后难得的消费热点。从去年开始,各大国产手机发布的旗舰机都不约而同将120W闪充当作一项卖点,华为、vivo、 OPPO、小米、中兴等国产旗舰机已进入超快闪充的赛道。

在这样的背景下,用户对于手机“快充”的需求显然也已发生了改变。过去大家可能只是希望手机充电快一点,以便能再多打一会电话、多发几条短信;但是现在,更多的消费者会希望手机能够在短短几分钟、十几分钟时间里,就充入大半电量,从而可以再支撑上大半天的娱乐、创作等高能耗使用。

镓未来一直以科技创新为原动力,始终站在时代科技最前沿的一贯风格,不仅在业界率先推出了330W图腾柱PFC+LLC氮化镓电源量产解决方案,以及700W图腾柱PFC+LLC量产电源方案,而且早已在120W快充应用领域进行了研究和探索。

当业界还在以120W PD功率密度突破1W/cm³的行业天花板而举杯庆祝的时候,镓未来已应用GaN 器件的PFC+AHB拓扑架构,将功率密度做到了惊人的2.14W/cm³,120W满载10分钟,效率高达94%以上,体积几乎与常见的65W快充相同——小个子,大能量,小巧便携,外出携带毫无负担。

PFC+AHB拓扑架构

镓未来120W超快闪充迷你充电器方案使用了全 GaN FET 的设计,在PFC架构中,使用了1颗 G1N65R240PB,AHB(非对称半桥架构)使用了两颗 G1N65R480PB。

非对称半桥(AHB)反激拓扑,可实现更高的效率和更高的开关频率。由于漏感中的能量被吸收,在主功率管开启过程中不存在漏感尖峰,功率管的电压应力更小,输入电压范围更宽,EMI噪声更小。

但传统的Si MOSFET的材料特性使器件无法工作在高频,同时限制了PFC电感的尺寸,无法满足小型化,高功率密度的需求。GaN FET的应用,提升了工作频率,使AHB能够向更小体积更高功率密度的方向发展,同时GaN FET降低了开关损耗以及反向恢复损耗,满足超快闪充对高效率以及高功率密度的需求。

GaNext-规格特点

镓未来120W超快闪充迷你充电器方案采用两脚输入,支持 90~264Vac 宽电压输入,输入频率支持50/60 Hz,支持最高 20V 6A 输出,满载效率高于 94.3%,输出电压纹波小于 300mV,工作温度 0~40℃,方案支持TSD、OLP、OVP、OCP、SCP、Open Loop 保护。

镓未来120W超快闪充迷你充电器方案带壳尺寸为 53x46x23mm,功率密度做到了 2.14W/cm³。方案采用被动散热设计,表面温升小于50℃,20V/16.5A 条件下触摸温度满足 IEC 62368-1 标准,EMI 满足 EN55032 CE&RE Class B 标准。

上图为 230Vac 输入下,常规 120W QR 电源和镓未来 120W 电源方案效率曲线对比图,可以看到镓未来120W超快闪充迷你充电器方案从轻载到重载条件下,效率均高于常规 120W QR 电源方案。

对于氮化镓功率器件的应用,主流的形态是分立和合封两种,合封氮化镓芯片使用相对容易,但是输出功率难以做大;而 E-mode 氮化镓分立器件驱动困难,功率范围相对于合封有所提升,但是大功率驱动容易受干扰;但镓未来 G1N65R240PB 和 G1N65R480PA 作为 Cascode GaN分立器件,驱动简单,和Si MOSFET完全一致,功率范围宽,涵盖更多应用场景。

GaN器件

与传统 Si MOSFET 相比,镓未来 G1N65R240PB 和 G1N65R480PA 两款 Cascode GaN 在应用时具备诸多优点。

更高栅极耐压,可兼容Si MOSFET Driver

相别于普通增强型氮化镓功率器件不超过+7V的栅极耐压,镓未来的所有氮化镓产品的Vgs均可以达到±20V,驱动电压通常建议为+12V,驱动线路仅需3个电阻及一个二极管,与Si MOSFET相同,可使设计者对驱动器有更多选择空间,且在驱动线路上保持熟悉感,减少设计风险。

更高阈值电压,避免误导通

普通增强型氮化镓的典型阈值电压1.7V,这与Si Superjunction器件(典型值一般在3V左右)相比,其抗噪声干扰能力低,增加了误导通的风险, 因此其对封装和Layout 要求极为严苛,需要尽可能减少寄生电感及噪声干扰的影响。

镓未来 G1N65R240PB 和 G1N65R480PA 将Vgs(th)提高到2.2V,可有效降低栅极噪声带来的误导通风险,提高了氮化镓器件的稳定性和可靠性,让设计者更放心、更安心。

GaN FET业界最低动态电阻,提高效率

在高压应用中,由于GaN器件的异质接触面中存在缺陷,会束缚一部分电子,从而在开关过程中增加了导通阻抗,此时的导通电阻称为动态电阻。动态电阻会增加GaN器件的导通损耗并且导致更高的温升,影响GaN器件的稳定性、可靠性以及系统的转换效率。

普通增强型氮化镓器件的动态电阻比静态Rds(on)上浮30%左右,尤其是在150度结温时,动态内阻竟然达到了25度结温时静态Rds(on)的2.5倍。G1N65R240PB 和 G1N65R480PA 采用特殊工艺,有效抑制了动态内阻,150度结温时仅为25度结温时的1.5倍,极大的降低了导通损耗,提升效率的同时,满足了大功率闪充的苛刻散热要求。

Vsd 做到业界最低1.6V

镓未来的氮化镓器件反向工作时,可以实现自动续流,在第三代半导体器件中(GaN and SiC),Vsd 做到业界最低1.6V,而普通增强型氮化镓器件 Vsd 为 3.2-5.6V,SiC MOSFET 的 Vsd 为4.8V,且负压关断会导致续流压降进一步提高,在大功率的桥式拓扑应用中表现尤为突出,减少死区损耗,提升效率。

充电头网获悉,镓未来 G1N65R240PB 和 G1N65R480PA 已经正式量产,有需求的伙伴可与镓未来联系哦~

关于镓未来

珠海镓未来科技有限公司成立于2020年10月,专注于高稳定性、高可靠性的氮化镓产品的研发和生产。

镓未来依托GaN功率器件的世界领先技术,实现GaN功率器件的国产化,可提供30W~6000W GaN器件以及系统解决方案的科技公司,致力于成为国产第三代半导体—氮化镓产品国际化的探路者及开拓者,为更好的赋能绿色能源及碳中和的伟大使命而砥砺前行。

充电头网总结

随着智能手机快充技术的发展以及 USB PD 3.1 快充标准的普及,120W功率段充电器的市场需求愈发旺盛。但目前市面上120W充电器的体积普遍都偏大,对日常使用和外出携带都造成一定不便,镓未来此次推出的120W超快闪充迷你充电器量产方案,采用 PFC+AHB 拓扑架构,内置多颗镓未来 Cascode GaN 器件,实现输出功率相同的基础上,体积大幅缩小,效率大幅提升。

本文来自网络,不代表趣头条立场,转载请注明出处:https://www.ngnnn.com/article/5_122212.html
上一篇倒计时2天!三星Neo QLED 8K电视国行版即将发布
下一篇巴西禁售不带充电器的iPhone!苹果表示不服提起上诉

为您推荐

研究人员在自旋电子器件制造工艺方面获新突破

研究人员在自旋电子器件制造工艺方面获新突破

集微网消息,据科技日报3月24日报道,美国明尼苏达双城大学研究人员和国家标准与技术研究院(NIST)的联合团队开发了一种制造自旋电子器件的突破性工艺,该工艺有可能成为半导体芯片新的行业标准。研究论文发表在最近的《先进功能材料》上。自旋电子学对于构建具有新功能的微电子设备来说非常重要。自旋电子设备利用电子的自
标准电源类芯片收入下滑 芯朋微上半年增收不增利

标准电源类芯片收入下滑 芯朋微上半年增收不增利

集微网报道 8月29日,芯朋微发布半年度报告称,2022年上半年,公司实现营业收入3.75亿元,同比增长15%;归母净利润0.58亿元,同比下降16.99%;扣非净利润0.45亿元,同比下降28.23%。芯朋微表示,上半年公司产品销售单价总体稳定,销量持续增长推动销售额同比增长15%。其中:家用电器类芯片适配于白电的 AC-DC+ Gate driver
对标苹果“环保”!小米这新机不送充电器了

对标苹果“环保”!小米这新机不送充电器了

小伙伴们都有同感叭?这几年机圈内卷的关键词,不止是硬件配置堆料猛如虎。还有一个词儿,厂商说出口会笑开花,消费者一听却觉得不妙,它就是:环保。往大说,环保为人类可持续发展出力,对个人来说,环保能带来干净卫生的环境。So,对于「环保」这事儿嗷,懂哥的态度是肯定且支持的,毕竟确实能看到效果。但是,懂哥又要说
无锡:希望英飞凌加大分立器件、功率器件及智能卡芯片等产线投入力度

无锡:希望英飞凌加大分立器件、功率器件及智能卡芯片等产线投入力度

集微网消息,据无锡日报报道,8月30日,无锡市市长赵建军与英飞凌大中华区总裁苏华一行工作会谈。赵建军表示,希望英飞凌加快推动项目达产,持续扩大既有项目产能,加快整合全球产能布局,加大分立器件、功率器件及智能卡芯片等产线投入力度;统筹谋划在锡布局,积极研究推动在锡设立地区分拨中心、分销中心等功能性机构,
冰感外壳采用低温胶料,图拉斯30W小冰块氮化镓快充拆解

冰感外壳采用低温胶料,图拉斯30W小冰块氮化镓快充拆解

前言随着氮化镓快充技术的普及,小体积高功率密度的氮化镓充电器逐渐成为主流,但是很多用户也普遍反映氮化镓快充存在充电发热厉害等问题,害怕因此损伤设备,并期待厂商通过技术迭代解决或加以改善。图拉斯针对这一行业痛点,推出了一款30W氮化镓小冰块充电器。该新品基于图拉斯自研Tora-Ice降温系统设计,通过提高转换效
返回顶部